
Determiners

and

Quantifiers

Type

Shifting and

Flexible

Types

QDPs in

Object

Position

Quantier

Raising

On

Variables

ESSLLI Summerschool 2014:

Intro to Compositional Semantics

Thomas Ede Zimmermann, Universität Frankfurt

Wolfgang Sternefeld, Universität Tübingen

Fourth Lecture: Determiners and Quantifiers

1 / 17

Determiners

and

Quantifiers

Type

Shifting and

Flexible

Types

QDPs in

Object

Position

Quantier

Raising

On

Variables

Determiners and Quantifiers

(1) a. Every student snored

b. A woman snored

c. No fly snored

every, a, no (and sometimes also the) are called quantifying determiners.

The subject phrases are QDPs (quantifying determiner phrases).

(2) What are the truth conditions for (1)?

2 / 17

Determiners

and

Quantifiers

Type

Shifting and

Flexible

Types

QDPs in

Object

Position

Quantier

Raising

On

Variables

Determiners and Quantifiers

(1) a. Every student snored

b. A woman snored

c. No fly snored

every, a, no (and sometimes also the) are called quantifying determiners.

The subject phrases are QDPs (quantifying determiner phrases).

(2) What are the truth conditions for (1)?

a.
�

every+NP+Predicate
�

s = 1 iff
�

NP
�

s ⊆
�

Predicate
�

s
b.

�

a+NP+Predicate
�

s = 1 iff
�

NP
�

s ∩
�

Predicate
�

s 6= ;

c.
�

no+NP+Predicate
�

s = 1 iff
�

NP
�

s ∩
�

Predicate
�

s =;

2 / 17

Determiners

and

Quantifiers

Type

Shifting and

Flexible

Types

QDPs in

Object

Position

Quantier

Raising

On

Variables

Determiners and Quantifiers

(1) a. Every student snored

b. A woman snored

c. No fly snored

every, a, no (and sometimes also the) are called quantifying determiners.

The subject phrases are QDPs (quantifying determiner phrases).

(2) What are the truth conditions for (1)?

a.
�

every+NP+Predicate
�

s = 1 iff
�

NP
�

s ⊆
�

Predicate
�

s
b.

�

a+NP+Predicate
�

s = 1 iff
�

NP
�

s ∩
�

Predicate
�

s 6= ;

c.
�

no+NP+Predicate
�

s = 1 iff
�

NP
�

s ∩
�

Predicate
�

s =;

(3) From (2) we may construe quantifiers as 2-place relations:

a.
�

every
�

s := { 〈X ,Y 〉 :X ⊆Y }

b.
�

a
�

s := { 〈X ,Y 〉 :X ∩Y 6= ; }

c.
�

no
�

s := { 〈X ,Y 〉 :X ∩Y =; }

X and Y stand for sets of individuals. X is called the restriction of the

quantifier, Y is called its scope. By convention, the restriction in (3)

precedes the scope!
2 / 17

Determiners

and

Quantifiers

Type

Shifting and

Flexible

Types

QDPs in

Object

Position

Quantier

Raising

On

Variables

Determiners and Quantifiers

(4) a. 〈
�

student
�

s ,

�

snore
�

s〉 ∈
�

every
�

s
b. 〈

�

woman
�

s ,

�

snore
�

s〉 ∈
�

a
�

s
c. 〈

�

fly
�

s ,

�

snore
�

s〉 ∈
�

no
�

s

The problem of compositionality:

(5) every student snores

(6) a.
�

every + NP
�

s = { X : 〈
�

NP
�

s ,X 〉 ∈
�

every
�

s }

b.
�

a + NP
�

s = { X : 〈
�

NP
�

s ,X 〉 ∈
�

a
�

s }

c.
�

no + NP
�

s = { X : 〈
�

NP
�

s ,X 〉 ∈
�

no
�

s }

We thus have to plug in the NP at the first position of the quantifier.

3 / 17

Determiners

and

Quantifiers

Type

Shifting and

Flexible

Types

QDPs in

Object

Position

Quantier

Raising

On

Variables

Determiners and Quantifiers

(7) General scheme:
�

QDet + NP
�

s =
�

QDet
�←−
∗

�

NP
�

s
= { X : 〈

�

NP
�

s ,X 〉 ∈
�

QDet
�

}

(8) a.
�

every + NP
�

s = { X :
�

NP
�

s ⊆X }

b.
�

a + NP
�

s = { X :
�

NP
�

s ∩X 6= ; }

c.
�

no + NP
�

s = { X :
�

NP
�

s ∩X =; }

(9)
�

QDP + Predicate
�

s = 1 iff
�

Predicate
�

s ∈
�

QDP
�

s iff
�

QDP
�

s ∗
�

Predicate
�

s = 1

(10)
�

no fly snored
�

s = 1 iff
�

snored
�

s ∈
�

no fly
�

s iff
�

snored
�

s ∈ (
�

no
�

s
←−
∗

�

fly
�

) iff

{ x : x snored in s } ∈ ({ x : x is a fly in s }←−∗ { 〈X ,Y 〉 :X ∩Y =; }) iff

{ x : x snored in s } ∈ { Y : { x : x is a fly in s }∩Y =; } iff

{ x : x is a fly in s }∩ { x : x snored in s }=;

4 / 17

Determiners

and

Quantifiers

Type

Shifting and

Flexible

Types

QDPs in

Object

Position

Quantier

Raising

On

Variables

Type Shifting and Flexible Types

Note that for subject + predicate we actually have two cases:

(11) a.
�

referential argument expression + predicate
�

s = 1 iff
�

referential argument
�

s ∗
�

predicate
�

s = 1 iff
�

referential argument
�

s ∈
�

predicate
�

s
b.

�

QDP + predicate
�

s = 1 iff
�

QDP
�

s ∗
�

predicate
�

s = 1 iff
�

QDP
�

s ∋
�

predicate
�

s

This is because our notation α∗β actually allows for two interpretations:

a. α= y (a refential expression), β=R (a predicate), so that

α∗β= y ∗R = 1 iff α ∈β (cf. (11-a)), or

b. α=R (a quantifying expression) and β= y a predicate, so that

α∗β=R∗y = 1 iff β ∈α (cf. (11-b)).

The correct interpretation depends on the “logical types” of α and β. This

kind of semantics is also called type driven interpretation.

5 / 17

Determiners

and

Quantifiers

Type

Shifting and

Flexible

Types

QDPs in

Object

Position

Quantier

Raising

On

Variables

Type Shifting and Flexible Types

In more classical approaches, however, this flexibility is not allowed. In

particular, the logical types of the corresponding components of semantic

rules are fixed. In particular, there is no such convention that R∗y = y ∗R.

We would therefore need two rules:

(12) a.
�

term + predicate
�

s = 1 iff
�

term
�

s ∈
�

predicate
�

s
b.

�

QDP + predicate
�

s = 1 iff
�

predicate
�

s ∈
�

QDP
�

s

However, some more restrictive theories require a

one-to-one-correspondance between syntactic and semantic rules, and

moreover one between syntactic categories and semantic types. In such a

theory, the semantic difference between term and QDP in (12) must be

ignorable.

6 / 17

Determiners

and

Quantifiers

Type

Shifting and

Flexible

Types

QDPs in

Object

Position

Quantier

Raising

On

Variables

Type Shifting and Flexible Types

In these approaches, it is assumed that all subjects, even terms, are sets of

sets (have the logical type of quantifying DPs):

(13)
�

subject + predicate
�

s = 1 iff
�

predicate
�

s ∈
�

subject
�

s

For referential expressions, a rule called type shifiting or Montague Lifting

converts a referential expression into a set of sets:

(14) LIFT(a) = { X : a ∈X }

7 / 17

Determiners

and

Quantifiers

Type

Shifting and

Flexible

Types

QDPs in

Object

Position

Quantier

Raising

On

Variables

Type Shifting and Flexible Types

Accordingly,

(15)
�

John snores
�

s = 1 iff
�

snores
�

s ∈
�

John
�

s iff
�

snores
�

s ∈ LIFT(John) iff
�

snores
�

s ∈ { X : John ∈X } iff

John ∈
�

snores
�

s

Or alternatively,

(16)
�

John snores
�

s = 1 iff
�

snores
�

s ∈

�

JohnDP
�

s
iff

�

snores
�

s ∈ LIFT(
�

John
�

s) iff
�

snores
�

s ∈ { X :
�

John
�

s ∈X } iff
�

John
�

s ∈
�

snores
�

s

8 / 17

Determiners

and

Quantifiers

Type

Shifting and

Flexible

Types

QDPs in

Object

Position

Quantier

Raising

On

Variables

QDPs in Object Position
Type Shifting for Predicates

(17) Paul loves every girl

The problem: a simple rule like argument reduction is not applicable!

First solution: In situ interpretation

(18) Let R be an n-place relation and Q a set of sets.

R −→
∗Q Q =Q

−→
∗Q R = { 〈x1, . . . xn−1 〉 : { y : 〈x1, . . . xn−1,y 〉 ∈R } ∈Q }

(19)
�

loves every girl
�

s
=

�

loves
�

s
−→
∗Q

�

every girl
�

s =
�

loves
�

s
−→
∗Q { X :

�

girl
�

s ⊆X } = 1 iff

{ x1 : { y : 〈x1,y 〉 ∈
�

loves
�

s } ∈ { X :
�

girl
�

s ⊆X } } iff

{ x1 :
�

girl
�

s ⊆ { y : 〈x1,y 〉 ∈
�

loves
�

s } }

9 / 17

Determiners

and

Quantifiers

Type

Shifting and

Flexible

Types

QDPs in

Object

Position

Quantier

Raising

On

Variables

QDPs in Object Position

(20)

�

John loves every girl

�

s

= 1 iff

j ∈ { x1 :
�

girl
�

s ⊆ { y : 〈x1,y 〉 ∈
�

loves
�

s } } iff
�

girl
�

s ⊆ { y : 〈 j ,y 〉 ∈
�

loves
�

s }

Note: The rule that applies −→
∗Q also covers the case of quantified subjects.

More generally, we can dispense with the simple rule for terms in favor or

the more complicated one for QDPs.

10 / 17

Determiners

and

Quantifiers

Type

Shifting and

Flexible

Types

QDPs in

Object

Position

Quantier

Raising

On

Variables

Quantifier Raising

(21)

�

A carpet touches every wall

�

s

= 1 iff

�

a carpet
�

s ∗Q [
�

touches
�

s
−→
∗Q

�

every wall
�

s]= 1 iff
�

a carpet
�

s ∋ [
�

touches
�

s
−→
∗Q

�

every wall
�

s]

This derives the reading with every wall in the scope of a carpet. To get the

reverse reading, we apply QR:

(22) every wall x a carpet touches tx

Now we have to interpret (22) as “the set of walls is a subset of the set of x

being touched by a carpet.” More generally:

(23) Q ∋ { x : x is touched by a carpet } iff

Q∗ { x : x is touched by a carpet } = 1 iff

Q∗ { x : a carpet touches x } = 1 iff

Q∗ { x :
�

a carpet touches x
�

s = 1 } = 1

11 / 17

Determiners

and

Quantifiers

Type

Shifting and

Flexible

Types

QDPs in

Object

Position

Quantier

Raising

On

Variables

Quantifier Raising

General rule:

(24)

�

DP x . . . tx . . .

�

s
=

�

DP
�

s ∗ { x :
�

. . . tx . . .

�

s = 1 }

Assumptions:

�

tx
�

s = x ;

tx is a referential expression, x is a term.

the second box is a clause (a sentence, a CP, anything the extension of

which is a truth value)

Note: if we want to generalize to QDPs,
�

tx
�

s = { Y : x ∈Y }

12 / 17

Determiners

and

Quantifiers

Type

Shifting and

Flexible

Types

QDPs in

Object

Position

Quantier

Raising

On

Variables

Quantifier Raising

Recall that QDPs in object position cannot be interpreted by −→
∗ . A second

way to resolve the problem is the application of QR:

(25) John loves every girl

every girl x John loves tx

(26)

�

every girl x John loves tx

�

s

=

�

every girl
�

s ∗ { x :
�

John
�

s ∗ [
�

loves
�

s
−→
∗

�

tx
�

s]

13 / 17

Determiners

and

Quantifiers

Type

Shifting and

Flexible

Types

QDPs in

Object

Position

Quantier

Raising

On

Variables

On Variables

Notes on the use of variables:

Variables are essential for multiple applications of QR. They relate the QDP

to the argumentent position of the verb.

(27) A man bought a present for every child

Assume we want a reading with every child having wide scope with respect

to a present, and a man having wide scope with respect to every child.

(28) a man x every child y a present z x bought z for y

14 / 17

Determiners

and

Quantifiers

Type

Shifting and

Flexible

Types

QDPs in

Object

Position

Quantier

Raising

On

Variables

On Variables

A note on so-called bound variable pronouns (BVPs):

(29) every man loves his mother

(6= every man loves every man’s mother

(30) LF: every man x tx loves hisx mother

Assume hisx = hex ’s and
�

hex
�

s = x

(31)
�

every man
�

s ∗ { x :
�

x loves hex ’s mother
�

s = 1 } =
�

every man
�

s ∗ { x : x ∈
�

loves
�

s
−→
∗

�

hex ’s mother
�

s } =
�

every man
�

s ∗ { x : x ∈
�

loves
�

s
−→
∗

�

mother
�

s (
�

hex
�

s) } =
�

every man
�

s ∗ { x : x ∈
�

loves
�

s
−→
∗

�

mother
�

s (x) }

In this framework, BVPs can be interpreted as bound by a QDP only if the

QDP is QRed. The reason is that only after quantifier raising, the quantifying

expression gets attached a variable, parallel to expressions like (∀x) or (∃x)

in Predicate Logic.

15 / 17

Determiners

and

Quantifiers

Type

Shifting and

Flexible

Types

QDPs in

Object

Position

Quantier

Raising

On

Variables

On Variables

Another cautionary note:

The interpretation of QR uses the operation of set building or

comprehension by forming the set { x :
�

. . . tx . . .

�

s = 1 }. We also assumed

that
�

tx
�

s = x . But x is strictly speaking not a denotation or reference, but an

element of the language we use to describe denotations. This is a serious

flaw which can be overcome by using various method, the most popular

being the use of assignment functions for variables, ie. functions that assign

values to x .

It would then follow, that
�

tx
�

s = g(x), where g is such a function. But then

all interpretations must depend not only on s, but on g. Unfortunately, there

is still a problem for compositionality. The reason is that set formation cannot

depend on a variable assignment g(x) that determines a denotation but

must consider all such functions h with potentially different values than g.

This is again a problem because then the semantics cannot depent on

things, sitations and truth values alone, but also on such functions (ie. such

functions are part of the ontology).

16 / 17

Determiners

and

Quantifiers

Type

Shifting and

Flexible

Types

QDPs in

Object

Position

Quantier

Raising

On

Variables

On Variables

This problem is addressed but not completely solved in Chapter 10 of our

book.

In fact, there is no straightforward and fully satisfying solution to the problem

of compositionality. . .

17 / 17

